This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response (DR)) as well as power for cell towers during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems can potentially enhance capabilities through information exchange with the power grid, which adds value for grid services that depend on location and time. The economic analysis focused on the potential revenue for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper includes case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs. The objective of this work is primarily on how fuel cells can become a significant part of the telecom backup power fleet to reduce system costs, environmental impact, and dependence on fossil fuels, while ensuring continuity of indispensable service for mobile users. The study identifies different fuel cell applications and nano/microgrid approaches for an extensive network of fuel cells as distributed energy resources. The possibilities of various application scenarios extend to fuel cell technologies and microgrids for reliable power supply.