Effective Electrode Edge Protection for Proton Exchange Membrane Fuel Cell Drive Cycle Operation [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.312 Generation, modification, storage

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2019

Mô tả vật lý: Size: p. 351-359 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 256136

Drive cycle (DC) tests employ rapid load cycling which will result in rapidly changing local operating conditions and consequently high non-uniform mechanical stress at the electrode perimeter. In order to better investigate the impact of electrode irregularities on the long-term behavior of the cell, it is necessary to exclude the edge effects of the membrane electrode assemblies (MEAs) as a failure mode. Therefore, an effective electrode edge protection technique using thin protective gaskets and a hot-pressing procedure was developed which dramatically prolonged lifetime. Open circuit voltage (OCV), air polarization curve, and hydrogen crossover limiting current density were monitored during the DC tests. For post-DC ex-situ analysis, an in-house developed pinhole detection apparatus was employed to analyze quantity, size, and location of the failure points of MEAs with and without edge protection. Non-protected MEAs typically developed tears at the electrode perimeter, while the longer-lasting protected MEAs exhibited seemingly random pinhole development.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH