Several jurisdictions with critical tunnel infrastructure have expressed the need to understand the risks and implications of traffic incidents in tunnels involving hydrogen fuel cell vehicles. A risk analysis was performed to estimate what scenarios were most likely to occur in the event of a crash. The results show that the most likely consequence is no additional hazard from the hydrogen, although some factors need additional data and study to validate. This includes minor crashes and scenarios with no release or ignition. When the hydrogen does ignite, it is most likely a jet flame from the pressure relief device release due to a hydrocarbon fire. This scenario was considered in detailed modeling of specific tunnel configurations, as well as discussion of consequence concerns from the Massachusetts Department of Transportation. Localized concrete spalling may result where the jet flame impinges the ceiling, but this is not expected to occur with ventilation. Structural epoxy remains well below the degradation temperature. The total stress on the steel structure was significantly lower than the yield stress of stainless steel at the maximum steel temperature even when the ventilation was not operational. As a result, the steel structure will not be compromised. It is important to note that the study took a conservative approach in several factors, so observed temperatures should be lower than predicted by the models.