The implementation of oxy-fuel technology in fossil-fuel power plants may contribute to increased system efficiencies and a reduction of pollutant emissions. One technology that has potential to utilize the temperature of undiluted oxy-combustion flames is open-cycle magnetohydrodynamic (MHD) power generators. These systems can be configured as a topping cycle and provide high enthalpy, electrically conductive flows for direct conversion of electricity. This report presents the design and modeling strategies of a MHD combustor operating at temperatures exceeding 3000 K. Throughout the study, computational fluid dynamics (CFD) models were extensively used as a design and optimization tool. A lab-scale 60 kWth model was designed, manufactured and tested as part of this project. A fully-coupled numerical method was developed in ANSYS FLUENT to characterize the heat transfer in the system. This study revealed that nozzle heat transfer may be predicted through a 40% reduction of the semi-empirical Bartz correlation. Experimental results showed good agreement with the numerical evaluation, with the combustor exhibiting a favorable performance when tested during extended time periods. A transient numerical method was employed to analyze fuel injector geometries for the 60-kW combustor. The ANSYS FLUENT study revealed that counter-swirl inlets achieve a uniform pressure and velocity ratio when the ports of the injector length to diameter ratio (L/D) is 4. An angle of 115 degrees was found to increase distribution efficiency. The findings show that this oxy-combustion concept is capable of providing a high-enthalpy environment for seeding, in order to render the flow to be conductive. Based on previous findings, temperatures in the range of 2800-3000 K may enable magnetohydrodynamic power extraction. The heat loss fraction in this oxy-combustion system, based on CFD and analytical calculations, at optimal operating conditions, was estimated to be less than 10 percent. Furthermore, the heat transfer design removed approximately 7 MW/m2. The results observed in the lab-scale system were employed to develop a 1-MW scaled prototype. Scaling methods were based on critical design criteria found in similar systems, aimed at replicating combustion flow fields and reducing possible instabilities. A numerical simulation of the combustor wall was developed for a combined thermal steady model and static structural model. This combined model was developed predict combined stress parameters within the wall during testing conditions. Both models were developed within ANSYS FEA software package. The relative accuracy presented as well major performance parameters are discussed to assess the design's validity and ensure safety. The scaled prototype was manufactured through selective laser melting (SLM)-based additive manufacturing to reduce lead times and increase geometrical complexity. Additional CFD models were developed to optimize coolant manifold system parameters and perform a parametric study on channel geometry. An investigation on coolant manifold geometry demonstrated improvements in channel flow distribution when enlarging manifold lengths and increasing the number of tubes feeding into the flow. A three-dimensional model based on a single channel was developed to capture the effect of variable properties and thermal stratification. All cases in the simulation exhibited higher wall temperatures and lower convective coefficients than those determined through 1-D analytical equations. This implies that pressure and velocity safety factors must be implemented during system operation. Overall, the findings made in this investigation are thought to be of value to researchers and industrial practitioners when designing oxy-fuel direct power extraction systems operating at temperatures exceeding 3000 K. In addition to this, the implementation of the developed technology at pilot and commercial scales could result in a significant improvement in the efficiencies of heritage and next-generation power cycles.