Annual Report [electronic resource] : Advanced Energy Systems Fuel Cells (30 September 2013)

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 333.8 Subsurface resources

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Office of the Assistant Secretary of Energy for Fossil Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2014

Mô tả vật lý: Medium: ED : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 256613

 The comprehensive research plan for Fuel Cells focused on Solid State Energy Conversion Alliance (SECA) programmatic targets and included objectives in two primary and focused areas: (1) investigation of degradation modes exhibited by the anode/electrolyte/cathode (AEC), development of computational models describing the associated degradation rates, and generation of a modeling tool predicting long term AEC degradation response
  and (2) generation of novel electrode materials and microstructures and implementation of the improved electrode technology to enhance performance. In these areas, the National Energy Technology Laboratory (NETL) Regional University Alliance (RUA) team has completed and reported research that is significant to the SECA program, and SECA continued to engage all SECA core and SECA industry teams. Examination of degradation in an operational solid oxide fuel cell (SOFC) requires a logical organization of research effort into activities such as fundamental data gathering, tool development, theoretical framework construction, computational modeling, and experimental data collection and validation. Discrete research activity in each of these categories was completed throughout the year and documented in quarterly reports, and researchers established a framework to assemble component research activities into a single operational modeling tool. The modeling framework describes a scheme for categorizing the component processes affecting the temporal evolution of cell performance, and provides a taxonomical structure of known degradation processes. The framework is an organizational tool that can be populated by existing studies, new research completed in conjunction with SECA, or independently obtained. The Fuel Cell Team also leveraged multiple tools to create cell performance and degradation predictions that illustrate the combined utility of the discrete modeling activity. Researchers first generated 800 continuous hours of SOFC experimental data capturing operational degradation. The data were matched by a 3D multi-physics simulation of SOFC operational performance assuming that the entire performance loss related to coarsening of the cathode triple phase boundary (3PB). The predicted 3PB coarsening was then used to tune the mobility parameters of a phase field model describing microstructural evolution of the lanthanum strontium manganate (LSM)/ yttria stabilized zirconia (YSZ) system. Once calibrated, the phase field model predicted continuous microstructural coarsening processes occurring over the operating period, which could be extrapolated to performance periods of longer duration and also used to produce 3D graphical representations. NETL researchers also completed significant electrode engineering research complimented by 3D multi-physics simulations. In one key activity researchers generated an illustration demonstrating that control of infiltrate deposition can provide cell manufacturers with significant additional operational and engineering control over the SOFC stack. Specifically, researchers demonstrated that by engineering the deposition of electrocatalyst inside the cathode, the distribution of overpotential across the cell could be controlled to either decrease the average cell overpotential value or minimize cross-cell overpotential gradient. Results imply that manufacturers can establish improved engineering control over stack operation by implementing infiltration technology in SOFC cathodes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH