Development of a reliable, miniaturized hydrogen safety sensor prototype [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.815 Machine design

Thông tin xuất bản: Los Alamos, N.M. : Oak Ridge, Tenn. : Los Alamos National Laboratory ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2010

Mô tả vật lý: Medium: ED : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 257037

In this article, the development and long-term testing of a hydrogen safety sensor for vehicle and infrastructure applications is presented. The working device is demonstrated through application of commercial and reproducible manufacturing methods and rigorous life testing results guided by materials selection, and sensor design. Fabricated using Indium Tin Oxide (ITO) as the sensing electrode, Yttria-Stabilized Zirconia (YSZ) as an oxygen ion conducting solid electrolyte and Platinum (Pt) as a pseudo-counter electrode, the device was subjected to interference studies, temperature cycling, and long-testing routine. The sensor responded in real time to varying concentrations of H{sub 2} (1000 to 20,000 ppm) monitored under a humidified condition. Among the interference gases tested such as nitric oxide (NO), nitrogen dioxide (NO{sub 2}), ammonia (NH{sub 3}), carbon monoxide (CO), and propylene (C{sub 3}H{sub 6}), the sensor showed cross-sensitivity to C{sub 3}H{sub 6}. Analyzing the overall device performance over 4000 hrs of testing for 5000 ppm of H{sub 2}, (a) the sensitivity varied {+-}21% compared to response recorded at 0 hrs, and (c) the response rise time fluctuated between 3 to 46 s. The salient features of the H{sub 2} sensor prototype designed and co-developed by Los Alamos National Laboratory (LANL) are (a) stable three phase interface (electrode/electrolyte/gas) leading to reliable sensor operation, (b) low power consumption, (b) compactness to fit into critical areas of application, (c) simple operation, (d) fast response, (e) a direct voltage read-out circumventing the need for any additional conditioning circuitry, and (f) conducive to commercialization.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH