An Open-Source Frequency-Domain Model for Floating Wind Turbine Design Optimization [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.521 Applied physics

Thông tin xuất bản: Golden, Colo. : Oak Ridge, Tenn. : National Renewable Energy Laboratory (U.S.) ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2022

Mô tả vật lý: Size: Article No. 042020 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 257062

A new frequency-domain dynamics model has been developed that uses open-source components to efficiently represent a complete floating wind turbine system. The model, called RAFT (Response Amplitudes of Floating Turbines), incorporates quasi-static mooring reactions, strip-theory and potential-flow hydrodynamics, blade-element-momentum aerodynamics, and linear turbine control. The formulation is compatible with a wide variety of support structure configurations and no manual or time-domain preprocessing steps are required, making RAFT very practical in design and optimization workflows. The model is applied to three reference floating wind turbine designs and its predictions are compared with results from time-domain OpenFAST simulations. There is good agreement in mean offsets as well the statistics and spectra of the dynamic response, verifying RAFT?s general suitability for floating wind analysis. Follow-on work will include verification of potential-flow and turbine-control features and application to optimization problems.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH