Validating simulated mountain wave impacts on hub-height wind speed using SoDAR observations [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.45 Wind engines

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2020

Mô tả vật lý: Size: p. 2220-2230 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 257134

The ascent of stably stratified air over a mountain barrier can trigger the generation of mountain waves. Mountain waves occur frequently over the Columbia River Gorge in western North America and can impact wind power generation over the area. Therefore, predicting the details of mountain waves events (e.g., dominant wavelength, timing, and duration) can be very valuable for the wind energy community. In this study, the ability of the Weather Research and Forecasting (WRF) model to simulate mountain waves and their impact on hub-height wind speed is investigated. Our results suggest that the WRF model has moderate skill in simulating observed mountain wave. Further, given WRF predictions of wavelength range and wave period, the Fast Fourier Transform can calculate the simulated mountain wave impact on hub-height wind speed. The resulting wind speeds agree well with SoDAR observations in terms of both magnitude and pattern. Finally, for the simulated cases, WRF consistently predicts impacts of significant mountain wave events about an hour earlier than the actual observations. Overall, in this work, the sensitivities as well as uncertainties associated with our methodology are discussed in detail.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH