In this work, we explore the spanwise velocities in the wake of a yawed wind turbine. In the curled wake model, these motions are induced by a collection of vortices shed from the rotor plane. The direction of the vorticity generated by yaw is aligned with the main flow (streamwise) direction. The streamwise vorticity induces velocities in the spanwise directions. These are the motions responsible for creating the curled wake mechanism. In this work, we explore a more accurate formulation for this mechanism, using a vortex cylinder. Under certain assumptions, the new and original curled wake models yield the same mathematical formulation. Also, both models predict an elliptic distribution of vortex strength, where the main difference is the location of the vortices.