Robust Output Feedback Control Design for Inertia Emulation by Wind Turbine Generators [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.44 Geothermal engineering

Thông tin xuất bản: Oak Ridge, Tenn. : Oak Ridge, Tenn. : Oak Ridge National Laboratory ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2021

Mô tả vật lý: Size: p. 5056-5067 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 257848

Wind generation has gained widespread use as a renewable energy source. Most wind turbines and other renewables connected to the grid through converters result in a reduction in the natural inertial response to grid frequency changes. The doubly-fed induction generator (DFIG) can be controlled to compensate for this reduction and, in fact, provide faster response than traditional synchronous machines. This paper proposes to design observer based output feedback linear quadratic regulator (LQR) and H control laws to realize the inertia emulation function and deliver fast frequency support. Furthermore, the aim is to track the reference speed by a diesel synchronous generator (DSG) in order to reach the desired inertia. The control signal is computed based on a reduced order model using the balanced truncation technique. A comparison with selective modal analysis (SMA) and balanced truncation model reduction techniques is presented. Comprehensive results show the effective emulation of synthetic inertia by implementing the control laws on a nonlinear three- phase diesel-wind system. The proposed technique is analyzed for different short circuit ratio (SCR) scenarios.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH