A Data-Driven Nonparametric Approach for Probabilistic Load-Margin Assessment Considering Wind Power Penetration [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 643.8 Housing and household equipment

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. National Nuclear Security Administration ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2020

Mô tả vật lý: Size: p. 4756-4768 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 257930

 A modern power system is characterized by an increasing penetration of wind power, which results in large uncertainties in its states. These uncertainties must be quantified properly
  otherwise, the system security may be threatened. Facing this challenge, here we propose a cost-effective, data-driven approach to assessing a power system's load margin probabilistically. Using actual wind data, a kernel density estimator is applied to infer the nonparametric wind speed distributions, which are further merged into the framework of a vine copula. The latter enables us to simulate complex multivariate and highly dependent model inputs with a variety of bivariate copulae that precisely represent the tail dependence in the correlated samples. Furthermore, to reduce the prohibitive computational time of traditional Monte-Carlo simulations that process a large amount of samples, we propose to use a nonparametric, Gaussian-process-emulator-based reduced-order model to replace the original complicated continuation power-flow model through a Bayesian-learning framework. To accelerate the convergence rate of this Bayesian algorithm, a truncated polynomial chaos surrogate, which serves as a highly efficient, parametric Bayesian prior, is developed. This emulator allows us to execute the time-consuming continuation power-flow solver at the sampled values with a negligible computational cost. Results of simulations that are performed on several test systems reveal the impressive performance of the proposed method in the probabilistic load-margin assessment.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH