The National Rotor Testbed (NRT) is a wind turbine blade research program in the Sandia National Laboratories (SNL) Wind Department that has developed a new blade design. Each blade includes bonded-in, threaded metal root inserts that enable the blades to be bolted onto the wind turbine hub. Prior to installing the flight blades on the turbine, root insert strength verification tests exhibited a subset of failures below the design load on one (NRT-02) of four blades. As part of a root cause analysis for the failures, this work analyzes "scraps" of the epoxy adhesive used to bond the metal inserts into the blade and uses surface topography and x-ray fluorescence (XRF) measurements to characterize the exterior surface of the root insert. Samples were taken from inserts that exhibited both high and low loads at failure, as well as some "control inserts" to monitor the state of the surface throughout the manufacturing process. Differences in the calorimetric response of the adhesive from the separate root inserts are apparent but none of them appear to relate to the pull load required to dislodge the inserts. Two takeaways of note include: In the way that the adhesive is processed, it does not reach full cure
and, Something occurred to sample#10 such that the fully-cured adhesive has a significantly lower T<
sub>
g<
/sub>
.