A two-step short-term probabilistic wind forecasting methodology based on predictive distribution optimization [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.822 Bearings

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2019

Mô tả vật lý: Size: p. 1497-1505 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 258069

With increasing wind penetrations into electric power systems, probabilistic wind forecasting becomes more critical to power system operations because of its capability of quantifying wind uncertainties. In this paper, a two-step probabilistic wind forecasting approach based on pinball loss optimization is developed. First, a multimodel machine learning-based ensemble deterministic forecasting framework is adopted to generate deterministic forecasts. The deterministic forecast is assumed to be the mean value of the predictive distribution at each forecasting time stamp. Then, the optimal unknown parameter (i.e., standard deviation) of the predictive distribution is estimated by a support vector regression surrogate model based on the deterministic forecasts. Lastly, probabilistic forecasts are generated from the predictive distribution. Numerical results of case studies at eight locations show that the developed two-step probabilistic forecasting methodology has improved the pinball loss metric score by up to 35% compared to a baseline quantile regression forecasting model.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH