Data-Driven Machine Learning for Wind Plant Flow Modeling [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.521 Applied physics

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2018

Mô tả vật lý: Size: Article No. 072004 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 258136

In this study, we introduce a data-driven machine learning framework for improving the accuracy of wind plant flow models by learning turbulence model corrections based on data from higher-fidelity simulations. First, a high-dimensional PDE-constrained optimization problem is solved using gradient-based optimization with adjoints to determine optimal eddy viscosity fields that improve the agreement of a medium-fidelity Reynolds-Averaged Navier Stokes (RANS) model with large eddy simulations (LES). A supervised learning problem is then constructed to find general, predictive representations of the optimal turbulence closure. A machine learning technique using Gaussian process regression is trained to predict the eddy viscosity field based on local RANS flow field information like velocities, pressures, and their gradients. The Gaussian process is trained on LES simulations of a single turbine and implemented in a wind plant simulation with 36 turbines. We show improvement over the baseline RANS model with the machine learning correction, and demonstrate the ability to provide accurate confidence levels for the corrections that enable future uncertainty quantification studies.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH