Many gearboxes in wind turbines do not achieve their expected design life
they do, however, commonly meet or exceed the design criteria specified in current standards in the gear, bearing, and wind turbine industry as well as third-party certification criteria. The cost of gearbox replacements and rebuilds, as well as the downtime associated with these failures, increases the cost of wind energy. In 2007, the U.S. Department of Energy established the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC). Its goals are to understand the root causes of premature gearbox failures and to improve their reliability. The GRC is examining a hypothesis that the gap between design-estimated and actual wind turbine gearbox reliability is caused by underestimation of loads, inaccurate design tools, the absence of critical elements in the design process, or insufficient testing. This report describes the recently completed tests of GRC Gearbox 3 in the National Wind Technology Center dynamometer and documents any modifications to the original test plan. In this manner, it serves as a guide for interpreting the publicly released data sets with brief analyses to illustrate the data. The primary test objective was to measure the planetary load-sharing characteristics in the same conditions as the original GRC gearbox design. If the measured load-sharing characteristics are close to the design model, the projected improvement in planetary section fatigue life and the efficacy of preloaded TRBs in mitigating the planetary bearing fatigue failure mode will have been demonstrated. Detailed analysis of that test objective will be presented in subsequent publications.