Termites are fascinating insects for a number of reasons, one of which being their specialization on diets of wood lignocellulose. The goal of this review is to consider stress-inducing characteristics of wood and apparent molecular-physiological adaptations in termite guts to overcome these stressors. Defensive factors present in wood include extractive secondary plant metabolites, lignin and related phenolics, crystalline cellulose, and low nitrogen content. Molecular-physiological adaptations of the termite gut to deal with these factors include robust detoxification and antioxidant machinery, the production of a peritrophic matrix and a wide range of cellulases from host and symbiotic sources, and creation of niches available to nitrogen-fixing bacterial symbionts. Considering termite gut physiology and symbioses in the context of stress-response has applied implications. Overall, these outcomes can include development of efficient biomass breakdown strategies, protection of microbes during industrial processing applications, and safeguarding wooden structures from termite damage.