CBF-dependent and CBF-independent regulatory pathways contribute to the differences in freezing tolerance and cold-regulated gene expression of two Arabidopsis ecotypes locally adapted to sites in Sweden and Italy [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 581.48 +Leaves and fronds

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Science ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2018

Mô tả vật lý: Size: Article No. e0207723 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 260124

Arabidopsis thaliana (Arabidopsis) increases in freezing tolerance in response to low nonfreezing temperatures, a phenomenon known as cold acclimation. The CBF regulatory pathway, which contributes to cold acclimation, includes three genes?CBF1, CBF2 and CBF3?encoding closely-related transcription factors that regulate the expression of more than 100 genes?the CBF regulon?that impart freezing tolerance. Here we compare the CBF pathways of two Arabidopsis ecotypes collected from sites in Sweden (SW) and Italy (IT). Previous studies showed that the SW ecotype was more freezing tolerant than the IT ecotype and that the IT ecotype had a nonfunctional CBF2 gene. Here we present results establishing that the difference in CBF2 alleles contributes to the difference in freezing tolerance between the two ecotypes. However, other differences in the CBF pathway as well as CBF-independent pathways contribute the large majority of the difference in freezing tolerance between the two ecotypes. The results also provided evidence that most cold-induced CBF regulon genes in both the SW and IT ecotypes are coregulated by CBF-independent pathways. Additional analysis comparing our results with those published by others examining the Col-0 accession resulted in the identification of 44 CBF regulon genes that were conserved among the three accessions suggesting that they likely have important functions in life at low temperature. The comparison further supported the conclusion that the CBF pathway can account for a large portion of the increase in freezing tolerance that occurs with cold acclimation in a given accession, but that CBF-independent pathways can also make a major contribution.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH