We report the structure-based discovery of CF53 (28) as a highly potent and orally active inhibitor of bromodomain and extra-terminal (BET) proteins. By the incorporation of a NH-pyrazole group into the 9H-pyrimido[4,5-b]indole core, we identified a series of compounds that bind to BRD4 BD1 protein with K<
sub>
i<
/sub>
values of <
1 nM and achieve low nanomolar potencies in the cell growth inhibition of leukemia and breast cancer cells. The most-promising compound, CF53, possesses excellent oral pharmacokinetic properties and achieves significant antitumor activity in both triple-negative breast cancer and acute leukemia xenograft models in mice. Determination of the co-crystal structure of CF53 with the BRD4 BD1 protein provides a structural basis for its high binding affinity to BET proteins. CF53 is very selective over non-BET bromodomain-containing proteins. Furthermore, these data establish CF53 as a potent, selective, and orally active BET inhibitor, which warrants further evaluation for advanced preclinical development.