Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 539.7 Atomic and nuclear physics

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy. Office of Environmental Restoration and Waste Management ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2015

Mô tả vật lý: Size: p. 125-135 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 261286

 The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. In this paper, we present a dual-isotope approach involving <
 sup>
 18<
 /sup>
 O and <
 sup>
 2<
 /sup>
 H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our findings for a 3-year sampling period show that the slopes of the meteoric water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. The streams showed strong evaporative enrichment compared to the local meteoric water line (?<
 sup>
 2<
 /sup>
 H=7.15 � ?<
 sup>
 18<
 /sup>
 O +9.28?) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH