Computational Modeling To Adapt Neutralizing Antibody [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 574.5 [Unassigned]

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. National Nuclear Security Administration ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2020

Mô tả vật lý: Size: 14 p. : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 261780

Monoclonal antibodies (mAbs) is the leading therapy for viral infections because it provides immediate protection and can be administered at higher levels than in a natural immune response. Finding mAbs that neutralize a broad spectrum of viral targets has proven difficult because many species and strains exist and blanket targeting is a slow and laborious process to experimentally screen 108 variants. A new method is needed to rapidly redesign mAbs for homologous targets. This project speeds up redesign using structure-based computational design to reduce the mAbs search space to a manageable level and screen mutants at a much higher rate than in experiments. Computation will also provide critical knowledge about the fundamental interactions. The project will adapt S230, a human antibody that neutralizes SARS-CoV, to neutralize SARS-COV-2.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH