Diatoms are a distinctive group of microalgae with the unique ability to produce a highly-ordered biosilica matrix, known as the frustule. Diatoms hold significant potential in the biotechnology field as a silica scaffold for embedding proteins. In this study, we analyzed the funtionalization of biosilica with a receptor complex through genetic modification of the diatom, Thalassiosira pseudonana. Through the use of Foerster Resonance Energy Transfer (FRET), the receptor was shown to remain active in transformed frustules after the inner cellular contents were removed. In addition to protein functionality, growth conditions for T. pseudonana were optimized. Untransformed cultures receiving aeration grew more rapidly than stagnant untransformed cultures. Surprisingly, transformed cultures grew more quickly than untransformed cultures. This study demonstrates isolated diatom frustules provide an effective scaffold for embedded receptor complexes. Through this research, we provide the groundwork for the development of new biosensors for use in diagnostics and environmental remediation.