Machine Learning Reduced Order Model for Cost and Emission Assessment of a Pyrolysis System [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.47 Solar-energy engineering

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2021

Mô tả vật lý: Size: p. 9950-9960 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 262506

 Biomass pyrolysis is a promising approach for producing economic and environmentally-friendly fuels and bioproducts. Biomass pyrolysis experiments show that feedstock properties have a significant impact on product yields and composition. Scientists are developing detailed chemical reaction mechanisms to capture the relationships between biomass composition and pyrolysis yields. These mechanisms can be computationally intensive. In this study, we investigate the use of a machine learning reduced order model (ROM) for assessing the costs and emissions of a pyrolysis biorefinery. Here, we developed a Kriging-based ROM to predict pyrolysis yields of 314 feedstock samples based on the results of a detailed chemical kinetic pyrolysis mechanism. The ROM is integrated into a chemical process model for calculating mass and energy yields in a commercial-scale (2000 tonne/day) biorefinery. The ROM estimated biofuel yields of 65 to 130 gallons per ton of dry biomass. This results in biofuel minimum fuel-selling prices of $2.62 to $5.43 per gallon and emissions of -13.62 to 145 kg of CO<
 sub>
 2<
 /sub>
  per MJ. The ROM achieved an average mean square error of 1.8e-20 and a mean absolute error of 0.53%. These results suggest that ROMs can facilitate rapid feedstock screening for biorefinery systems.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH