Microalgae to biofuels through hydrothermal liquefaction [electronic resource] : Open-source techno-economic analysis and life cycle assessment

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 666.9 Masonry adhesives

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2021

Mô tả vật lý: Size: Article No. 116613 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 262542

 Hydrothermal liquefaction is a promising conversion technology in algae biofuel research due to its ability to agnostically convert proteins, carbohydrates, and lipids to biocrude. The high-temperature conditions that define this conversion process require the material to maintain a subcritical liquid state, which complicates the assessment of accurate thermochemical properties due to the required pressure. To clarify this issue, this work compares the estimated performance of algal hydrothermal liquefaction between different thermodynamic models. A process model was developed in Aspen Plus from a robust assessment of current literature. Techno-economic assessment and life-cycle assessment metrics are derived from this model and used as key performance indicators. The baseline fuel price contribution of hydrothermal liquefaction is $0.45 per liter gasoline equivalent. Independently decreasing the temperature from 350 �C to 260 �C while maintaining yield reduces the conversion cost by 19%, illustrating the importance of understanding the high-temperature thermodynamics of the system. Different thermodynamic property models can vary fuel conversion cost results by $0.07 per liter gasoline equivalent. The baseline global warming potential is +23 g CO<
 sub>
 2<
 /sub>
  eq MJ<
 sup>
 -1<
 /sup>
  and the net energy ratio is 0.30. Environmental metrics beyond global warming potential and net energy ratio are also discussed for the first time. Uncertainties in conversion performance are bounded through a scenario analysis that manipulates parameters such as product yield and nutrient recycle to produce a range of economic and environmental metrics. The report is supplemented with an open source model to support future hydrothermal liquefaction assessments and accelerate the development of commercial-scale systems.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH