Understanding the role of Fischer?Tropsch reaction kinetics in techno-economic analysis for co-conversion of natural gas and biomass to liquid transportation fuels [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 666.9 Masonry adhesives

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2019

Mô tả vật lý: Size: p. 1306-1320 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 262780

With the increased availability of low-cost natural gas, the co-conversion of natural gas and biomass-to-liquid fuels has attracted attention from industry due to its potential for improving liquid fuel yields while lowering greenhouse gas emissions. In this paper, we provide an understanding of Fischer-Tropsch kinetics, improvements in processing strategies for hydrocarbon production, and of its impact on cost for the co-conversion of natural gas and biomass-to-transportation fuels. Studies that investigate the effect of Fischer-Tropsch reaction kinetics on techno-economic analysis can be used to develop process models that consider reaction stoichiometry and account for the effect of the paraffin-to-olefin ratio. We consider two processing scenarios: (1) one that does not employ a hydrocracker, and (2) the other where a hydrocracker serves as an integral part of the process scheme. Our analysis shows that co-processing natural gas not only facilitates the economic benefits of converting biomass-to-liquid fuels but also facilitates flexibility in process integration. The resulting minimum fuel selling price ranged from $2.47-$3.47/GGE (gallon gasoline equivalent) without the hydrocracker and ranged from $2.17-$3.60/GGE with the inclusion of the hydrocracker, for a 50 million GGE hydrocarbon fuel production facility and for varying blending ratios for biomass from 0-100% with natural gas. The hydrocracker helps to increase the production of diesel and jet fuels substantially, with carbon efficiencies of 50% attained for a chain growth probability of 0.87. The cost penalty comes from the capital expenses of the hydrocracker, and the expense may not be offset with hydrocarbon yield improvement.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH