Depolymerization of corn stover lignin with bulk molybdenum carbide catalysts [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 662.8 Other fuels

Thông tin xuất bản: Oak Ridge, Tenn. : Oak Ridge, Tenn. : Oak Ridge National Laboratory ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2019

Mô tả vật lý: Size: p. 528-535 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 262811

 Depolymerization of lignin into aromatic compounds in high yield for production of fuels and chemicals is vital to realize an economically competitive biorefinery. In this study, undoped and nickel-doped bulk molybdenum carbides were synthesized and evaluated in reductive depolymerization of lignin model compound and corn stover lignin in the presence of hydrogen. The highest lignin monomer yield of 37.3% was obtained with Ni-Mo<
 sub>
 2<
 /sub>
 C and ethanol/water solvent. Nickel doping promoted the depolymerization performance of Mo<
 sub>
 2<
 /sub>
 C, by increasing the number of metallic sites while decreasing that of acidic sites. This change in active site distribution mitigated CC coupling reactions and coking. Ethanol addition to the water solvent also significantly suppressed CC coupling. Mixing carbides with zeolites decreased monomer yields, presumably due to excessive repolymerization of reactive intermediates over the acidic zeolite. This work highlights the feasibility of developing effective lignin depolymerization catalysts by fine-tuning the properties of molybdenum carbide catalysts and solvent systems.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH