Understanding zeolite deactivation by sulfur poisoning during direct olefin upgrading [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 666.3 Pottery

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2019

Mô tả vật lý: Size: 1.6 MB : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 262836

The presence of sulfur contaminants in bitumen derived crude oils can lead to rapid catalyst deactivation and is a major problem faced by downstream refiners. Whilst expensive hydrotreating steps may remove much of the sulfur content, it is important to understand how catalyst deactivation by sulfur poisoning occurs and how it may be mitigated. Here we report a mechanistic study of sulfur poisoning over a zeolite catalyst promoted with silver and gallium Lewis acids. Olefin upgrading, an essential process in the refinement of heavy oils, is used as a model reaction. Access to the zeolite inner pores is blocked by bulky, weakly adsorbed sulfur species. Pore access and thus catalyst activity is restored by increasing the reaction temperature. We also show that a simple alkaline treatment greatly improves both the sulfur tolerance and performance of the catalyst. Furthermore, these findings may enhance the rational design of heterogenous catalysts for olefin upgrading.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH