Surface-Engineered Inorganic Nanoporous Membranes for Vapor and Pervaporative Separations of Water?Ethanol Mixtures [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.8 Machine engineering

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2018

Mô tả vật lý: Size: Article No. 95 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 262908

 <
 p>
 Surface wettability-tailored porous ceramic/metallic membranes (in the tubular and planar disc form) were prepared and studied for both vapor-phase separation and liquid pervaporative separations of water-ethanol mixtures. Superhydrophobic nanoceramic membranes demonstrated more selective permeation of ethanol (relative to water) by cross-flow pervaporation of liquid ethanol?water mixture (10 wt % ethanol feed at 80 �C). In addition, both superhydrophilic and superhydrophobic membranes were tested for the vapor-phase separations of water?ethanol mixtures. Porous inorganic membranes having relatively large nanopores (up to 8-nm) demonstrated good separation selectivity with higher permeation flux through a non-molecular-sieving mechanism. Due to surface-enhanced separation selectivity, larger nanopore-sized membranes (~5?100 nm) can be employed for both pervaporation and vapor phase separations to obtain higher selectivity (e.g., permselectivity for ethanol of 13.9 during pervaporation and a vapor phase separation factor of 1.6), with higher flux due to larger nanopores than the traditional size-exclusion membranes (e.g., inorganic zeolite-based membranes having sub-nanometer pores). The prepared superhydrophobic porous inorganic membranes in this work showed good thermal stability (i.e., the large contact angle remains the same after 300 �C for 4 h) and chemical stability to ethanol, while the silica-textured superhydrophilic surfaced membranes can tolerate even higher temperatures. These surface-engineered metallic/ceramic nanoporous membranes should have better high-temperature tolerance for hot vapor processing than those reported for polymeric membranes.<
 /p>
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH