Cu-based catalysts containing targeted functionalities including metallic Cu, oxidized Cu, ionic Cu, and Bronsted acid sites were synthesized and evaluated for isobutane dehydrogenation. Hydrogen productivities, combined with <
i>
operando<
/i>
X-ray absorption spectroscopy, indicated that Cu(I) sites in Cu/BEA catalysts activate C-H bonds in isobutane. Computational analysis revealed that isobutane dehydrogenation at a Cu(I) site proceeds through a two-step mechanism with a maximum energy barrier of 159 kJ/mol. Furthermore, these results demonstrate that light alkanes can be reactivated on Cu/BEA, which may enable re-entry of these species into the chain-growth cycle of dimethyl ether homologation, thereby increasing gasoline-range (C<
sub>
5+<
/sub>
) hydrocarbon yield.