The overall goal of this project is to identify genes and gene interaction networks contributed to the extreme segregants with 30 folds biomass yield difference in sugarcane F2 populations. Towards achieving this goal, yield trials of 108 F2 extreme segregants from <
i>
S. officinarum<
/i>
LA Purple and <
i>
S. robustum<
/i>
MOL5829 (LM population) were carried out in two locations in three years. A yield trial of the second F2 population from <
i>
S. officinarum<
/i>
LA Purple and <
i>
S. spontaneum<
/i>
US56-14-4 (LU population) was installed in the summer of 2014 and the first set of yield component data was collected. For genotyping, transcriptomes from leaves and stalks of 70 extreme segregants of the LM F2 population and 119 individuals of the LU F2 populations were sequenced. The genomes of 91 F1 individuals from the LM populations are being sequenced to construct ultra-high density genetic maps for each of the two parents for both assisting the LA Purple genome assembling and for testing a hypothesis of female restitution. The genomes of 110 F2 individuals from single F1 in the LU population, a different set from the 119 F2 individuals used for transcriptome sequencing, are being sequenced for mapping genes and QTLs affecting biomass yield and for testing a hypothesis of female restitution. Gene expression analysis between extreme segregants of high and low biomass yield showed up-regulation of cellulose synthase, cellulose, and xylan synthase in high biomass yield segregants among 3,274 genes differentially expressed between the two extremes. Our transcriptome results revealed not only the increment of cell wall biosynthesis pathway is essential, but the rapid turnover of certain cell wall polymers as well as carbohydrate partitioning are also important for recycling and energy conservation during rapid cell growth in high biomass sugarcane. Seventeen differentially expressed genes in auxin, one in ethylene and one in gibberellin related signaling and biosynthesis pathways were identified, which could potentially regulate biomass yield. Differentially expressed genes, PIF3 and EIL5, involved in gibberellin and ethylene pathway could play an important role in biomass accumulation. Differential gene expression analysis was also carried out on the LU population. High-biomass yield was mainly determined by assimilation of carbon in source tissues. The high-level expression of fermentative genes in the low-biomass group was likely induced by their low-energy status. The haploid (tetraploid) genome of <
i>
S. spontanium<
/i>
AP85-441 was sequenced with chromosome level assembly and allele defined annotation. This reference genome along with the upcoming <
i>
S. officinarum<
/i>
genome will allow us to identify genes and alleles contributed to biomass yield.