Field Evaluation of Transgenic Switchgrass Plants Overexpressing <i>PvMYB<sub>4</sub></i> for Reduced Biomass Recalcitrance [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 662.8 Other fuels

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Science ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2015

Mô tả vật lý: Size: p. 910-921 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 263734

 High biomass yields and minimal agronomic input requirements have made switchgrass, <
 i>
 Panicum virgatum<
 /i>
  L., a leading candidate lignocellulosic bioenergy crop. Large-scale lignocellulosic biofuel production from such crops is limited by the difficulty to deconstruct cell walls into fermentable sugars: the recalcitrance problem. In this study, we assessed the field performance of switchgrass plants overexpressing the switchgrass MYB<
 sub>
 4<
 /sub>
  (<
 i>
 PvMYB<
 sub>
 4<
 /sub>
 <
 /i>
 ) transcription factor gene. PvMYB<
 sub>
 4<
 /sub>
  transgenic switchgrass can have great lignin reduction, which commensurately increases sugar release and biofuel production. Our results over two growing seasons showed that one transgenic event (out of eight) had important gains in both biofuel (32% more) and biomass (63% more) at the end of the second growing season relative to non-transgenic controls. These gains represent a doubling of biofuel production per hectare, which is the highest gain reported from any field-grown modified feedstock. In contrast to this transgenic event, which had relatively low ectopic overexpression of the transgene, five of the eight transgenic events planted did not survive the first field winter. The dead plants were all high-overexpressing events that performed well in the earlier greenhouse studies. Disease susceptibility was not compromised in any transgenic events over the field experiments. These results demonstrate the power of modifying the expression of an endogenous transcription factor to improve biofuel and biomass simultaneously, and also highlight the importance of field studies for "sorting" transgenic events. In conclusion, further research is needed to develop strategies for fine-tuning temporal-spatial transgene expression in feedstocks to optimize desired phenotypes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH