High-throughput prediction of <i>Acacia</i> and eucalypt lignin syringyl/guaiacyl content using FT-Raman spectroscopy and partial least squares modeling [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.48 Nuclear engineering

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Science ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2015

Mô tả vật lý: Size: p. 953-963 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 263747

 High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of <
 i>
 Acacia<
 /i>
  and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown <
 i>
 Acacia<
 /i>
  and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, <
 i>
 Acacias<
 /i>
 , in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. In conclusion, this research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH