Development of a size reduction equation for woody biomass [electronic resource] : The influence of branch wood properties on Rittinger's constant

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 333.78 *Recreational and wilderness areas

Thông tin xuất bản: Oak Ridge, Tenn. : Oak Ridge, Tenn. : Oak Ridge National Laboratory ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2015

Mô tả vật lý: Size: p. 1475-1484 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 263934

 Size reduction is an essential but energy-intensive process for preparing biomass for conversion processes. Three well-known scaling equations (Bond, Kick, and Rittinger) are used to estimate energy input for grinding minerals and food particles. Previous studies have shown that the Rittinger equation has the best fit to predict energy input for grinding cellulosic biomass. In the Rittinger equation, Rittinger's constant (k<
 sub>
 R<
 /sub>
 ) is independent of the size of ground particles, yet we noted large variations in k<
 sub>
 R<
 /sub>
  among similar particle size ranges. In this research, the dependence of k<
 sub>
 R<
 /sub>
  on the physical structure and chemical composition of a number of woody materials was explored. Branches from two softwood species (Douglas fir and pine) and two hardwood species (aspen and poplar) were ground in a laboratory knife mill. The recorded data included power input, mass flow rate, and particle size before and after grinding. Nine material properties were determined: particle density, solid density (pycnometer and x-ray diffraction methods), microfibril angle, fiber coarseness, fiber length, and composition (lignin and cellulose glucan contents). The correlation matrix among the nine properties revealed high degrees of interdependence between properties. The k<
 sub>
 R<
 /sub>
  value had the largest positive correlation (+0.60) with particle porosity across the species tested. As a result, particle density was strongly correlated with lignin content (0.85), microfibril angle (0.71), fiber length (0.87), and fiber coarseness (0.78). An empirical model relating k<
 sub>
 R<
 /sub>
  to particle density was developed.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH