Switchgrass (Panicum virgatum L.) Intraspecific Variation and Thermotolerance Classification Using in Vitro Seed Germination Assay [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 631.5 Cultivation and harvesting

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2011

Mô tả vật lý: Size: p. 134-147 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 263983

 Cardinal temperatures for plant processes have been used for thermotolerance screening of genotypes, geoclimatic adaptability determination and phenological prediction. Current simulation models for switchgrass (Panicum virgatum L.) utilize single cardinal temperatures across genotypes for both vegetative and reproductive processes although in-tra-specific variation exists among genotypes. An experiment was conducted to estimate the cardinal temperatures for seed germination of 14 diverse switchgrass genotypes and to classify genotypes for temperature tolerance. Stratified seeds of each genotype were germinated at eight constant temperatures from 10 �C to 45 �C under a constant light intensity of 35 ?mol m<
 sup>
 -2<
 /sup>
 s<
 sup>
 -1<
 /sup>
  for 12 hd<
 sup>
 -1<
 /sup>
 . Germination was recorded at 6-h intervals in all treatments. Maximum seed germination (MSG) and germination rate (GR), estimated by fitting Sigmoidal function to germination-time series data, varied among genotypes. Quadratic and bilinear models best described the MSG and GR responses to temperature, respectively. The mean cardinal temperatures, T<
 sub>
 min<
 /sub>
 , T<
 sub>
 opt<
 /sub>
 , and T<
 sub>
 max<
 /sub>
 , were 8.1, 26.6, and 45.1 �C for MSG and 11.1, 33.1, and 46.0 �C for GR, respectively. Cardinal temperatures for MSG and GR
  however, varied significantly among genotypes. Genotypes were classified as sensitive (Cave-in-Rock, Dacotah, Expresso, Forestburg, Kanlow, Sunburst, Trailblazer, and Tusca), intermediate (Alamo, Blackwell, Carthage, Shawnee, and Shelter) and tolerant (Summer) to high temperature based on cumulative temperature response index (CTRI) estimated by summing individual response indices estimated from the MSG and GR cardinal temperatures. Similarly, genotypes were also classified as sensitive (Alamo, Blackwell, Carthage, Dacotah, Shawnee, Shelter and Summer), moderately sensitive (Cave-in-rock, Forestburg, Kanlow, Sunburst, and Tusca), moderately tolerant (Trailblazer), and tolerant (Expresso) to low temperatures. The cardinal temperature estimates would be useful to improve switchgrass models for field applications. Additionally, the identified cold- and heat-tolerant genotypes can be selected for niche environments and in switchgrass breeding programs to develop new genotypes for low and high temperature environments.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH