Physicochemical structural changes of cellulosic substrates during enzymatic saccharification [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 647.95 Eating and drinking places

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Science ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2016

Mô tả vật lý: Size: Article No. 00015 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 264545

Enzymatic hydrolysis represents one of the major steps and barriers in the commercialization process of converting cellulosic substrates into biofuels and other value added products. It is usually achieved by a synergistic action of enzyme mixture typically consisting of multiple enzymes such as glucanase, cellobiohydrolase and ?-glucosidase with different mode of actions. Due to the innate biomass recalcitrance, enzymatic hydrolysis normally starts with an initial fast rate of hydrolysis followed by a rapid decrease of rate toward the end of hydrolysis. With majority of literature studies focusing on the effect of key substrate characteristics on the initial rate or final yield of enzymatic hydrolysis, information about physicochemical structural changes of cellulosic substrates during enzymatic hydrolysis is still quite limited. Consequently, what slows down the reaction rate toward the end of hydrolysis is not well understood. Lastly, this review highlights recent advances in understanding the structural changes of cellulosic substrates during the hydrolysis process, to better understand the fundamental mechanisms of enzymatic hydrolysis.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH