Development of heavy-duty vehicle representative driving cycles via decision tree regression [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 629.89 Computer control

Thông tin xuất bản: Golden, Colo. : Oak Ridge, Tenn. : National Renewable Energy Laboratory (U.S.) ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2021

Mô tả vật lý: Size: Article No. 102843 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 265715

Previously, researchers who developed representative driving cycles mainly focused on light-duty vehicles and only considered vehicle speed and related derivations. In this paper, we propose a novel approach to develop representative cycles for heavy-duty vehicles. By implementing decision tree regression (DTR) to the Fleet DNA on-road vehicle data, a broader set of metrics, such as engine power and fuel consumption, can be used for more robust cycle development. Additionally, the influence of each metric on the regression target is also accounted for by a weighted number derived through the DTR to enhance the representativenss of the developed cycle. As case studies, we applied the proposed method to five heavy-duty vocations (drayage, long haul, regional haul, local delivery, and transit bus) and derived the most representative cycle, as well as four extreme cycles (maximal energy consumption, maximal power-weighted work, maximal fraction of high speed, and minimal fuel economy) to advance the related alternative powertrain design.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH