With the advancement of vehicle-to-vehicle and vehicle-to-infrastructure technologies, more and more real-time information regarding traffic and transportation system will be available to vehicles. This paper presents the development of a novel algorithm that uses available velocity bounds and powertrain information to generate an optimal velocity trajectory over a prediction horizon. When utilised by a vehicle, this optimal velocity trajectory reduces fuel consumption. The objective of this optimisation problem is to reduce dynamic losses, required tractive force, and completing trip distance with a given travel time. Sequential quadratic programming method is employed for this nonlinearly constrained optimisation problem. When applied to a GM Volt-2, the generated velocity trajectory saves fuel compared to a real-world drive cycle. The simulation results confirm the fuel consumption reduction with the rule-based mode selection and the energy management strategy of a GM Volt 2 model in Autonomie.