A Deep Generative Model for Non-Intrusive Identification of EV Charging Profiles [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.43 Internal-combustion engines

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Science ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2020

Mô tả vật lý: Size: p. 4916-4927 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 266194

The proliferation of electric vehicles (EVs) brings environmental benefits and technical challenges to power grids. An identification algorithm which can accurately extract individual EV charging profiles out of widely available smart meter measurements has attracted great interests. This paper proposes a non-intrusive identification framework for EV charging profile extraction, which is driven by deep generative models (DGM). First, the proposed DGM is designed as a representation layer embedded into the Markov process and used to model the joint probability distribution of available time-series data. A novel contribution is to approximate posterior distributions by neural networks whose parameters are obtained by variational inference and supervised learning. Second, the EV charging status is inferred from the DGM via dynamic programming. Lastly, the desired EV charging profile can be reconstructed by the rated power of EV models and inferred status. Compared with the benchmark Hidden Markov Models, the proposed framework can better handle noise in data with less computational complexity and better overall accuracy performances with smaller recall. The proposed framework is validated by numerical experiments on the Pecan Street dataset.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH