RouteE [electronic resource] : A Vehicle Energy Consumption Prediction Engine

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.43 Internal-combustion engines

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Office of the Assistant Secretary of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2020

Mô tả vật lý: Size: p. 2760-2767 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 266202

The emergence of connected and automated vehicles and smart cities technologies create the opportunity for new mobility modes and routing decision tools, among many others. To achieve maximum mobility and minimum energy consumption, it is critical to understand the energy cost of decisions and optimize accordingly. The Route Energy prediction model (RouteE) enables accurate estimation of energy consumption for a variety of vehicle types over trips or sub-trips where detailed drive cycle data are unavailable. Applications include vehicle route selection, energy accounting and optimization in transportation simulation, and corridor energy analyses, among others. The software is a Python package that includes a variety of pre-trained models from the National Renewable Energy Laboratory (NREL). However, RouteE also enables users to train custom models using their own data sets, making it a robust and valuable tool for both fast calculations and rigorous, data-rich research efforts. The pre-trained RouteE models are established using NREL?s Future Automotive Systems Technology Simulator paired with approximately 1 million miles of drive cycle data from the Transportation Secure Data Center, resulting in energy consumption behavior estimates over a representative sample of driving conditions for the United States. Validations have been performed using on-road fuel consumption data for conventional and electrified vehicle powertrains. Transferring the results of the on-road validation to a larger set of real-world origin-destination pairs, it is estimated that implementing the present methodology in a green-routing application would accurately select the route that consumes the least fuel 90% of the time. The novel machine learning techniques used in RouteE make it a flexible and robust tool for a variety of transportation applications.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH