An Automated Vehicle Fuel Economy Benefits Evaluation Framework Using Real-World Travel and Traffic Data [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 629.22 Types of vehicles

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Office of the Assistant Secretary of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2019

Mô tả vật lý: Size: p. 29-41 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 266321

Increasing automation is a consistent development trend in the automobile industry. However, real-world evaluation of the operational and energy consumption differences between automated vehicles and comparable manually driven vehicles has been limited. This study helps fill the information gap by comparing the operation and fuel economy of vehicles in adaptive cruise control (ACC) and non-ACC modes based on large-scale field test data collected by Volvo Car Corporation (Volvo Cars) from vehicles traveling on the designated 'Drive Me' project road network in Gothenburg, Sweden. The test vehicles' travel data are classified by driving mode (ACC vs. non-ACC) and driving conditions, which refer to traffic speed and road grade in this study. The results from the data logging f leet are used to estimate the aggregate fuel con - sumption differences at the Drive Me road-network level for vehicles traveling in ACC vs. non-ACC mode based on appropriately weighting the total amount of travel that took place on the network under different driving conditions. At the ACC penetration levels observed in the field test data, vehicles tended to drive more smoothly in ACC mode than in non-ACC mode. The corresponding travel-weighted fuel consumption rate for vehicles in ACC mode was about 5%-7% lower than for vehicles in non-ACC mode when traveling at similar conditions. Sensitivity analyses impart confidence in this result, and in the future, the established evaluation framework could be used to objectively quantify potential on-road fuel consumption impacts from vehicles with even higher levels of automated driving capability.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH