Numerical study of a micro flow reactor at engine pressures [electronic resource] : Flames with repetitive extinction and ignition and simulations with a reduced chemical model

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.43 Internal-combustion engines

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. National Nuclear Security Administration ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2018

Mô tả vật lý: Size: p. 102-110 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 266431

Combustion in a narrow channel with an imposed temperature gradient is studied numerically at elevated pressure with engine-relevant fuels. Here, the focus is placed on unsteady flames with repetitive extinction and ignition (FREI) to determine the potential of this regime for fuel testing and calibration of reduced chemical mechanisms. First, it is shown that the FREI regime does occur at elevated pressures for sufficiently small tube diameters. The sensitivity of the extinction and ignition temperatures to low-temperature chemistry is found to be significantly enhanced at 25 bar compared to atmospheric conditions. The ignition and extinction temperatures differ by up to 100 K between PRF mixtures with varying octane numbers. Ternary mixtures of iso-octane/n-heptane/toluene and iso-octane/n-heptane/ethanol at similar research and motor octane numbers are also studied. Second, the potential of using data from the micro flow reactor to infer reaction rates is assessed. A reduced chemical mechanism combining a small fuel-dependent submechanism with a detailed fuel-independent submechanism for the core species chemistry is used for that purpose. Only the most sensitive fuel-dependent reactions are inferred. the calibrated reduced model is compared to a detailed model and good agreement in ignition delay times and laminar flame speeds is observed. Finally, this illustrates the potential of a micro flow reactor with a controlled temperature profile to test fuels and infer kinetic data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH