Surface recogniton for cars [electronic resource] : A comprehensive approach for neural networks

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 628.1 Water supply

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. National Nuclear Security Administration ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2017

Mô tả vật lý: Size: 6 p. : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 266522

This paper explores the viability of neural-networkbased classification of ground surface for vehicles. By classifying road surface in near realtime, improvements in vehicle performance (e.g. braking and cornering) may be possible. Classification performance for many combinations of feature encoding and neural network types are compared. The vehicle used here was an An Audi ?S3? with a magnetic suspension system on the sport mode. An NI CompactRIO (or cDAQ) module was used to record from a lowing the cDAQ to communicate with the PCB 352C03 one-axis accelerometer. The accelerometer was firmly attached to the windshield of the car. This work focuses on the classification of four road surfaces (asphalt, dirt, concrete, and sand), though larger target sets were also considered. The most accurate method involved a MATLAB feature extraction package with a back-propagation neural network, yielding an overall accuracy of 97%. Lessons learned from this wide exploration of options may extend to other related classification problems.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH