Development and Implementation of Mechanistic Terry Turbine Models in RELAP-7 to Simulate RCIC Normal Operation Conditions [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 333.79 Energy

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Office of the Assistant Secretary for Nuclear Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2016

Mô tả vật lý: Size: 34 p. : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 266708

As part of the efforts to understand the unexpected ?self-regulating? mode of the RCIC (Reactor Core Isolation Cooling) systems in Fukushima accidents and extend BWR RCIC and PWR AFW (Auxiliary Feed Water) operational range and flexibility, mechanistic models for the Terry turbine, based on Sandia?s original work [1], have been developed and implemented in the RELAP-7 code to simulate the RCIC system. In 2016, our effort has been focused on normal working conditions of the RCIC system. More complex off-design conditions will be pursued in later years when more data are available. In the Sandia model, the turbine stator inlet velocity is provided according to a reduced-order model which was obtained from a large number of CFD (computational fluid dynamics) simulations. In this work, we propose an alternative method, using an under-expanded jet model to obtain the velocity and thermodynamic conditions for the turbine stator inlet. The models include both an adiabatic expansion process inside the nozzle and a free expansion process outside of the nozzle to ambient pressure. The combined models are able to predict the steam mass flow rate and supersonic velocity to the Terry turbine bucket entrance, which are the necessary input information for the Terry turbine rotor model. The analytical models for the nozzle were validated with experimental data and benchmarked with CFD simulations. The analytical models generally agree well with the experimental data and CFD simulations. The analytical models are suitable for implementation into a reactor system analysis code or severe accident code as part of mechanistic and dynamical models to understand the RCIC behaviors. The newly developed nozzle models and modified turbine rotor model according to the Sandia?s original work have been implemented into RELAP-7, along with the original Sandia Terry turbine model. A new pump model has also been developed and implemented to couple with the Terry turbine model. An input model was developed to test the Terry turbine RCIC system, which generates reasonable results. Both the INL RCIC model and the Sandia RCIC model produce results matching major rated parameters such as the rotational speed, pump torque, and the turbine shaft work for the normal operation condition. The Sandia model is more sensitive to the turbine outlet pressure than the INL model. The next step will be further refining the Terry turbine models by including two-phase flow cases so that off-design conditions can be simulated. The pump model could also be enhanced with the use of the homologous curves.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH