Predictive Models of Li-ion Battery Lifetime (Presentation) [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 333.79 Energy

Thông tin xuất bản: Golden, Colo. : Oak Ridge, Tenn. : National Renewable Energy Laboratory (U.S.) ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2014

Mô tả vật lý: Size: 30 pp. : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 267092

Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH