Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.31 Generation, modification, storage, transmission of electric power

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Office of the Assistant Secretary of Energy for Fossil Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2017

Mô tả vật lý: Size: 49 p. : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 268055

Alstom Power Inc., a wholly owned subsidiary of the General Electric Company (GE), has completed the project ?Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development? under U.S. Department of Energy (DOE) Award Number DE-FE0024076. This project was part of DOE?s Novel Crosscutting Research and Development to Support Advanced Energy Systems program. AUSC Tube Membrane Panel Development was a two and one half year project to develop and verify the manufacturability and serviceability of welded tube membrane panels made from high performance materials suitable for the AUSC steam cycles, defined as high pressure steam turbine inlet conditions of 700-760�C (1292-1400�F) and 24.5-35MPa (3500-5000psi). The difficulty of this challenge lies in the fact that the membrane-welded construction imposes demands on the materials that are unlike any that exist in other parts of the boiler. Tube membrane panels have been designed, fabricated, and installed in boilers for over 50 years with relatively favorable experience when fabricated from carbon and Cr-Mo low alloy steels. The AUSC steam cycle requires membrane tube panels fabricated from materials that have not been used in a weldment with metal temperatures in the range of 582-610�C (1080-1130�F). Fabrication materials chosen for the tubing were Grade 92 and HR6W. Grade 92 is a creep strength enhanced ferritic Cr-Mo alloy and HR6W is a high nickel alloy. Once the materials were chosen, GE performed the engineering design of the panels, prepared shop manufacturing drawings, and developed manufacturing and inspection plans. After the materials were purchased, GE manufactured and inspected the tube membrane panels, determined if post fabrication heat treatment of the tube membrane panels was needed, performed pre- and post-weld heat treatment on the Grade 92 panels, conducted final nondestructive inspection of any heat treated tube membrane panels, conducted destructive inspection of the completed tube membrane panels,and performed simulated shop repairs on the panel fabricated using Grade 92. GE executed the program as the prime contractor under the direction of Principal Investigator Mr. James Pschirer. Other participants in this project included GE Boiler Engineering, GE Chattanooga Manufacturing, GE Materials Technology Center, GE Rocky Mountain Service Center, and a Technical Consultant from Electric Power Research Institute (EPRI).
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH