Evaluating the Effects of the Kingston Fly Ash Release on Fish Reproduction [electronic resource] : Spring 2009 - 2010 Studies

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 363.739 Pollution of specific environments

Thông tin xuất bản: Washington, DC : Oak Ridge, Tenn. : United States. Department of Energy Work for Others Program ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2012

Mô tả vật lý: Medium: ED : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 268396

 On December 22, 2008, a dike containing fly ash and bottom ash at the Tennessee Valley Authority's (TVA) Kingston Fossil Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits from the spill extended 4 miles upstream of the facility to Emory River mile 6 and downstream to Tennessee River mile 564 ({approx}8.5 miles downstream of the confluence of the Emory River with the Clinch River, and {approx}4 miles downstream of the confluence of the Clinch River with the Tennessee River). A byproduct of coal combustion, fly ash contains a variety of metals and other elements which, at sufficient concentrations and in specific forms, can be harmful to biological systems. The ecological effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to come from elevated levels of certain metals in the ash, particularly selenium, on fish reproduction and fish early life stages (Lemly 1993
  Besser and others 1996). The ovaries of adult female fish in a lake contaminated by coal ash were reported to have an increased frequency of atretic oocytes (dead or damaged immature eggs) and reductions in the overall numbers of developing oocytes (Sorensen 1988) associated with elevated body burdens of selenium. Larval fish exposed to selenium through maternal transfer of contaminants to developing eggs in either contaminated bodies of water (Lemly 1999) or in experimental laboratory exposures (Woock and others 1987, Jezierska and others 2009) have significantly increased incidences of developmental abnormalities. Contact of fertilized eggs and developing embryos to ash in water and sediments may also pose an additional risk to the early life stages of exposed fish populations through direct uptake of metals and other ash constituents (Jezierska and others 2009). The establishment and maintenance of fish populations is intimately associated with the ability of individuals within a population to reproduce. Reproduction is thus generally considered to be the most critical life function affected by environmental contamination. From a regulatory perspective, the issue of potential contaminant-related effects on fish reproduction from the Kingston fly ash spill has particular significance because the growth and propagation of fish and other aquatic life is a specific classified use of the affected river systems. To address the potential effects of fly ash from the Kingston spill on the reproductive health of exposed fish populations, ORNL has undertaken a series of studies in collaboration with TVA that include: (1) a combined field study of metal bioaccumulation in ovaries and other fish tissues (Adams and others 2012) and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill (the current report)
  (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (Greeley and others 2012)
  (3) additional laboratory experimentation focused on the potential effects of long-term exposures to fly ash on fish survival and reproductive competence (unpublished)
  and (4) a combined field and laboratory study examining the in vitro developmental success of embryos and larvae obtained from fish exposed in vivo for over two years to fly ash in the Emory and Clinch Rivers (unpublished). The current report focuses on the reproductive condition of adult female fish in reaches of the Emory and Clinch Rivers influenced by the fly ash spill at the beginning of the spring 2009 breeding season - the first breeding season immediately following the fly ash release - and during the subsequent spring 2010 breeding season. Data generated from this and related reproductive/early life stage studies provide direct input to ecological risk assessment efforts and complement and support other phases of the overall biomonitoring program associated with the fly ash spill.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH