The book begins at an undergraduate student level, assuming only basic knowledge of calculus in one variable. It rigorously treats topics such as multivariable differential calculus, the Lebesgue integral, vector calculus and differential equations. After having created a solid foundation of topology and linear algebra, the text later expands into more advanced topics such as complex analysis, differential forms, calculus of variations, differential geometry and even functional analysis. Overall, this text provides a unique and well-rounded introduction to the highly developed and multi-faceted subject of mathematical analysis as understood by mathematicians today.-- Source other than Library of Congres
Includes bibliographical references (p. 501) and indexe