Bayesian Analysis of Failure Time Data Using P-Splines [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Matthias Kaeding

Ngôn ngữ:

ISBN-13: 978-3658083939

Ký hiệu phân loại: 519.2 Probabilities

Thông tin xuất bản: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2015.

Mô tả vật lý: IX, 110 p. 23 illus. , online resource.

Bộ sưu tập: Tài liệu truy cập mở

ID: 286349

Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for these models is presented in a unified framework and applied on data sets. Among others, existing algorithms for the grouped Cox and the piecewise exponential model under interval censoring are combined with a data augmentation step for the applications. The author shows that the resulting Gibbs sampler works well for the grouped Cox and is merely adequate for the piecewise exponential model. Contents Relative Risk and Log-Location-Scale Family Bayesian P-Splines Discrete Time Models Continuous Time Models Target Groups Researchers and students in the fields of statistics, engineering, and life sciences Practitioners in the fields of reliability engineering and data analysis involved with lifetimes The Author Matthias Kaeding obtained his Master of Science degree at the University of Bamberg in Survey Statistics.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH