Identification Properties for Estimating the Impact of Regulation on Markups and Productivity

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: James Sampi

Ngôn ngữ: eng

Ký hiệu phân loại: 338.14 Factors affecting production

Thông tin xuất bản: World Bank, Washington, DC, 2021

Mô tả vật lý:

Bộ sưu tập: Tài liệu truy cập mở

ID: 286808

 This paper addresses several shortcomings in the productivity and markup estimation literature. Using Monte-Carlo simulations, the analysis shows that the methods in Ackerberg, Caves and Frazer (2015) and De Loecker and Warzynski (2012) produce biased estimates of the impact of policy variables on markups and productivity. This bias stems from endogeneity due to the following: (1) the functional form of the production function
  (2) the omission of demand shifters
  (3) the absence of price information
  (4) the violation of the Markov process for productivity
  and (5) misspecification when marginal costs are excluded in the estimation. The paper addresses these concerns using a quasi-maximum likelihood approach and a generalized estimator for the production function. It produces unbiased estimates of the impact of regulation on markups and productivity. The paper therefore proposes a work-around solution for the identification problem identified in Bond, Hashemi, Kaplan and Zoch (2020), and an unbiased measure of productivity, by directly accounting for the joint impact of regulation on markups and productivity.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH