STRONG CONVERGENCE OF INERTIAL HYBRID ITERATION FOR TWO ASYMPTOTICALLY G-NONEXPANSIVE MAPPINGS IN HILBERT SPACE WITH GRAPHS

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Pham Cam Tu Cao, Trung Hieu Nguyen

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Tạp chí Khoa học - Trường Đại học Sư phạm TP Hồ Chí Minh, 2020

Mô tả vật lý: tr.1137

Bộ sưu tập: Metadata

ID: 296387

In this paper, by combining the shrinking projection method with a modified inertial S-iteration process, we introduce a new inertial hybrid iteration for two asymptotically G-nonexpansive mappings and a new inertial hybrid iteration for two G-nonexpansive mappings in Hilbert spaces with graphs. We establish a sufficient condition for the closedness and convexity of the set of fixed points of asymptotically G-nonexpansive mappings in Hilbert spaces with graphs. We then prove a strong convergence theorem for finding a common fixed point of two asymptotically G-nonexpansive mappings in Hilbert spaces with graphs. By this theorem, we obtain a strong convergence result for two G-nonexpansive mappings in Hilbert spaces with graphs. These results are generalizations and extensions of some convergence results in the literature, where the convexity of the set of edges of a graph is replaced by coordinate-convexity. In addition, we provide a numerical example to illustrate the convergence of the proposed iteration processes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH