Small Area Estimation of Poverty and Wealth Using Geospatial Data

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: David Newhouse

Ngôn ngữ: eng

Ký hiệu phân loại: 339.2 Distribution of income and wealth

Thông tin xuất bản: World Bank, Washington, DC, 2023

Mô tả vật lý:

Bộ sưu tập: Tài liệu truy cập mở

ID: 297809

This paper offers a nontechnical review of selected applications that combine survey and geospatial data to generate small area estimates of wealth or poverty. Publicly available data from satellites and phones predicts poverty and wealth accurately across space, when evaluated against census data, and their use in model-based estimates improve the accuracy and efficiency of direct survey estimates. Although the evidence is scant, models based on interpretable features appear to predict at least as well as estimates derived from Convolutional Neural Networks. Estimates for sampled areas are significantly more accurate than those for non-sampled areas due to informative sampling. In general, estimates benefit from using geospatial data at the most disaggregated level possible. Tree-based machine learning methods appear to generate more accurate estimates than linear mixed models. Small area estimates using geospatial data can improve the design of social assistance programs, particularly when the existing targeting system is poorly designed.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH